Материалы по тегу: nvme-of

20.07.2021 [13:07], Алексей Степин

Viking и Kalray совместно создадут NVMe-oF СХД FLASHBOX нового поколения

Компания Kalray активно развивает свою концепцию сопроцессора данных (DPU) и имеет в своём арсенале соответствующие ускорители, о которых мы не так давно рассказывали в одной из предыдущих заметок. На днях Kalray заключила ещё один стратегический союз, на этот раз с Viking Enterprise Solutions, крупным OEM-поставщиком серверного оборудования, включая системы хранения данных.

Сама Viking довольно длительное время концентрирует свои усилия в направлении создания систем хранения данных, особенно с поддержкой популярного стека технологий NVMe over Fabrics. В начале лета она уже анонсировала СХД VDS2249R на 24 накопителя NVMe с портами 100GbE. Системы такого класса создают огромный поток данных, нагружающий центральные процессоры СХД.

СХД Viking VDS2249R имеет модульную конструкцию

СХД Viking VDS2249R имеет модульную конструкцию

И снять с них нагрузку как раз и помогут разработки Kalray, которая располагает уникальным многоядерным DPU Coolidge MPPA, способным «переварить» 12 Гбайт/с при крайне невысоком уровне задержек. Компании заключили договорённость о разработке нового класса решений NVMe-oF на базе вышеупомянутой системы VDS2249R.

Kalray не без оснований считает, что за DPU —  будущее дезагрегированных СХД

Kalray не без оснований считает, что за DPU — будущее дезагрегированных СХД

Напомним, новая СХД Viking компактна, она занимает в высоту всего 2U, но при этом вмещает 24 накопителя в формате U.2. Каждый из двух контроллеров данной системы хранения данных поддерживает платы расширения с интерфейсом PCI Express 3.0 и позволяет производить замену практически всех компонентов в «горячем» режиме.

Ускоритель Kalray K200-LP идеально впишется в состав СХД, поскольку представляет собой низкопрофильную плату. Несмотря на компактность, он обладает внушительными ресурсами, имея на борту 80-ядерный процессор Coolidge MPPA и до 32 Гбайт собственной оперативной памяти DDR4. Сочетание технологий Viking и Kalray приведёт к созданию системы FLASHBOX нового поколения, предназначенной для задач машинного обучения, аналитики, обработки изображений и видео в реальном времени, а также любых других сценариев подобного рода. Официальный анонс FLASHBOX запланирован на конец сентября.

Постоянный URL: http://servernews.ru/1044680
12.07.2021 [20:06], Владимир Агапов

Graid представила RAID-ускоритель SupremeRAID SR-1000 для NVMe SSD и NVMe-oF

Компания Graid Technology  разработала программно-аппаратное решение SupremeRAID, которое поможет устранить узкие места в RAID-системах на базе NVMe-накопителей, подключённых как напрямую, так и по сети (NVMe-oF). Аппаратная часть решения представлена однослотовой (100 × 197,5 мм) картой SupremeRAID SR-1000 с интерфейсом PCIe 3.0 x16, которая потребляет 75 Вт.

Карта оснащена высокопроизводительным «умным» процессором для обработки всех операций RAID и поддерживает различные интерфейсы NVMe (U.2, M.2, AIC) а также SAS и SATA. По заявлению производителя, это первая в мире карта, которая позволяет пользователям добавлять такие функции как сжатие, шифрование и тонкое выделение ресурсов, а также позволяющая организовать NVMe-oF RAID-массив.

Программная часть разработана для Linux (CentOS 8.3, RHEL 8.4, Ubuntu 20.04, openSUSE Leap 15.2, SLES 15 SP2) и состоит из модуля ядра (graid.ko), CLI-инструмента управления (graidctl) и демона управления обработкой запросов (graid_server). Реализована поддержка массивов RAID 0/1/5/6/10 с максимальным числом физических дисков 32 (до 4 групп дисков, по 8 шт. в каждой). Максимальная ёмкость дисковой группы ограничивается только физическими характеристиками накопителей.

Архитектура SupremeRAID, основанная на виртуальном NVMe-контроллере и PCIe-ускорителе, берущем на себя все операции с RAID, высвобождает ресурсы CPU и облегчает интеграцию с современными программно компонуемыми системами (SCI) для получения 100% доступной производительности SSD. При этом возможна реализация облачного подхода при работе с хранилищем.

Вычислительная мощность применённого процессора позволяет отказаться от использования модулей кеширования для достижения удовлетворительной производительности, а также от резервных батарей, обеспечивающих сохранность данных в кеше в случае отключения питания. А поддержка NVMe-oF для организации RAID-массива позволяет дезагрегировать ресурсы хранения, предоставляя пользователям возможности их более полного использования — в независимости от физического местонахождения скорость будет практически такой же, как и при прямом подключении.

Заявленная производительность составляет более 6 млн. IOPS, а скорость работы массива на базе накопителей с интерфейсом PCIe 3.0 и PCIe 4.0 составляет 25 и 100 ГиБ/с соответственно. И это похоже на правду, если верить данным Gigabyte, которая одной из первых применила это решение на практике. Её 2U-сервер R282-Z94, включающий два процессора AMD EPYC 7742, 20 NVMe SSD Kioxia CM6-R и SupremeRAID, позволил провести серию тестов производительности подсистемы хранения данных.

gigabyte.com

gigabyte.com

Массив RAID-5, состоящий из трёх накопителей CM6-R в OLAP-задачах показывает 4,6 млн IOPS на случайном чтении и 765 тыс. IOPS на случайной записи, обеспечивая при этом чрезвычайно низкую задержку. Даже в случае отказа одного из SSD, производительность системы все равно превышает 1 млн IOPS, сохраняя высокую доступность приложения.

Массив RAID-5, состоящий из 20 накопителей CM6-R, обеспечивает очень большую ёмкость с последовательным чтением на уровне 91 ГиБ/с и последовательной записью 7 ГиБ/с. Наконец, массив RAID-10 из те же 20 накопителей может обеспечивать последовательное чтение 104 ГиБ/с и последовательную запись 30 ГиБ/с, что почти в 8 раз выше, чем у традицонных RAID-контроллеров.

gigabyte.com

gigabyte.com

Такой результат делает решение привлекательным для приложений, требующих высокой скорости чтения, таких как машинное обучение, анализ больших данных и т.д. По словам Лиандера Ю (Leander Yu), генерального директора GRAID, сотрудничество с GIGABYTE и Kioxia позволило компании представить технологию хранения и защиты данных, обеспечивающую лучшую в отрасли производительность для рабочих нагрузок ИИ, IoT и 5G в новом поколении All-Flash СХД.

Постоянный URL: http://servernews.ru/1044014
24.06.2021 [14:26], Владимир Мироненко

NVMe-oF: изменятся ли SSD под влиянием сетевых фабрик?

NVMe — Что мы имеем сейчас?

Расширение использования NVMe в инфраструктуре публичных и частных облаков способствовало постепенному переходу от архитектуры ЦОД с вертикальным масштабированием к так называемой коммодизации, то есть к использованию серийных, неспециализированных системам с горизонтальным масштабированием, что позволило реализовать новые парадигмы распределенных вычислений.

Дальнейшее развитие спецификаций и функций СХД с поддержкой NVMe™ подсветило проблемы, связанные с эффективностью, масштабируемостью и уровнем утилизации систем. Поиск решений для обозначенных выше проблем создал предпосылки для появления более новой технологии — NVMe-over-Fabrics или сокращённо NVMe-oF™. Давайте посмотрим на возможные последствия его появления для системных архитектур.

Текущие проблемы системной архитектуры

Наблюдая за миром вокруг нас, мы неизменно отмечаем увеличение объёмов создаваемых и потребляемых данных. Рост объёма данных и сопутствующее ему усложнение приложений ощутимо повышают значимость того, где, когда и как хранится и обрабатывается информация.

blog.westerndigital.com

blog.westerndigital.com

Традиционные IT-инфраструктуры в большинстве своем статичны. Они были разработаны для того, чтобы справляться с возникающими время от времени экстремальными рабочими нагрузками (необязательно возникающими на ежедневной основе). Инфраструктура таких систем всегда должна иметь определённый запас прочности и включать парк оборудования «на вырост». Однако такой подход обычно сводится к наращиванию всей инфраструктуры целиком: увеличение вычислительных мощностей приводит и к увеличению объёма хранилища и памяти, пропускной способности сети и т.д. в независимости от того, действительно ли это необходимо.

При таком подходе системы, разработанные в господствующей ранее парадигме вертикального масштабирования (scale up), часто остаются недозагруженными. Установленное оборудование не используется в полной мере, а некоторые системы и вовсе простаивают большую часть времени.

Эволюция архитектур

Современные системы с горизонтальным масштабированием (scale out) позволяют одновременно наращивать вычислительные мощности, объём памяти и хранилища. Виртуализированные системы позволили реализовать гибкое выделение и разделение ресурсов. Гиперконвергентные системы (HCI) сделали следующий шаг, позволив хранилищам стать общими и разделяемыми в рамках инфраструктуры (см. рис. 1). Впрочем, несмотря на повышение гибкости и адаптивности, этот подход не позволяет независимо масштабировать все ресурсы самой инфраструктуры.

Рис. 1 — Среды: традиционная, гиперконвергентная, на базе сетевой фабрики

Рис. 1 — Среды: традиционная, гиперконвергентная, на базе сетевой фабрики

Поэтому в процессе создания более эффективных архитектур, способных справиться с увеличением и объёма, и сложности данных, возникла потребность в более гибкой и масштабируемой инфраструктуре для данных. Как и ЦОД гиперскейлеров, облачные и корпоративные дата-центры завтрашнего дня должны обеспечивать независимое масштабирование каждого из трёх важных компонентов инфраструктуры: вычислительных мощностей, памяти и хранилища.

В чем важность сетевой фабрики?

Чтобы компоненты можно было масштабировать независимо друг от друга, вычислительные мощности, память и хранилище должны быть изолированы друг от друга и объединены посредством некоторой сети. Однако для обеспечения оптимальной производительности такая сеть, а точнее сетевая фабрика, должна быть как можно более незаметной, то есть не иметь больших накладных расходов, связанных, например, с транзитом данных или задержками на уровне протокола.

Для мира СХД понятие фабрики не является чем-то радикально новым. Давным-давно реализована поддержка работы SCSI поверх Ethernet и Fibre Channel, и такие сети хранения данных завоевали популярность благодаря высокой скорости работы и надёжности передачи данных.

Рис. 2 — Система с горизонтальным масштабированием в сравнении с компонуемой дезагрегированной инфраструктурой

Рис. 2 — Система с горизонтальным масштабированием в сравнении с компонуемой дезагрегированной инфраструктурой

Однако с помощью NVMe-oF новые дезагрегированные инфраструктуры позволяют отделить друг от друга и вычислительные ресурсы, и ресурсы хранения. Причём сохраняется как уровень производительности — скорость работы с хранилищем такая же, как и прямом подключении NVMe-накопителей, — так и совместный доступ к данным с высоким уровнем параллелизма.

Более того, использование сетевых фабрик в дезагрегированных инфраструктурах позволяет расширить возможности компонуемых систем, то есть таких, где можно легко задействовать любые необходимые аппаратные ресурсы посредством программной оркестрации, что упрощает (пере-)конфигурацию систем под конкретные задачи.

NVMe + сетевая фабрика — следующий шаг в эволюции NVMe-oF

Существует целый ряд конфигураций аппаратного оборудования и сетевых ресурсов, позволяющих создать систему на базе адаптируемой и гибкой дезагрегированной архитектуры с поддержкой независимого масштабирования, которая одновременно с этим обеспечивала бы высокую производительность.

Стандарт передачи данных NVMe — это протокол для общения не только между флеш-накопителем и контроллером хранения данных, но и, в сетевых фабриках, между хостом и контроллером хранения данных. Вопрос лишь в том, как это всё реализовать.

Один из способов — добавить возможность сетевого подключения непосредственно в устройства хранения (рис. 3). При прямом подсоединении к сетевой фабрике посредством PCIe, Ethernet или Infiniband NVMe-накопители могут поддерживать протоколы с низким уровнем задержки, что открывает дверь в мир новых, дезагрегированных систем. Впрочем, такой подход порождает несколько интересных технологических вопросов:

  1. Какие сетевые фабрики и протоколы выбрать?
  2. Как в этом случае будет выглядеть внешняя интеграция сетевых структур и SSD?
  3. Приведет ли это к расцвету контроллеров SSD со встроенной поддержкой подключения к сетевым фабрикам?
Рис. 3 — Подключение устройств хранения к сетевой структуре

Рис. 3 — Подключение устройств хранения к сетевой структуре

Рассматривая разные варианты контроллеров, мы должны оценить роль SSD в системе, учесть его возможности и особенности флеш-памяти. Следует ли, например, вывести на рынок SSD со встроенной поддержкой сетевого подключения? Если да, то каким образом будут распределяться обязанности по обработке сетевого трафика между SSD и сетевой фабрикой? Как это повлияет на программное обеспечения хоста, на защиту данных и на управление хранилищем?

Изучая эти вопросы, мы также должны уделить внимание повышению эффективности в рамках новой архитектуры, в частности, перебросу части задач с CPU на другие доступные вычислительные ядра. Наш подход к интеграции различных характеристик сетевых фабрик и ядер с устройствами хранения данных может стать отправной точкой для новой парадигмы вычислений с помощью NVMe-oF.

Примером реализации NVMe-oF является платформа хранения Western Digital OpenFlex Data24, которая позволяет полностью использовать пропускную способность NVMe SSD Ultrastar сразу несколькими вычислительными узлами, объединёнными в Ethernet-фабрику (NVMe-oF 1.0a) с низкими задержками.

Система в форм-факторе 2U включает до 24 NVMe SSD-накопителей Ultrastar DC SN840 ёмкостью до 368 Тбайт. Согласно проведенным Western Digital лабораторным тестам, производительность OpenFlex Data24 при установке шести сетевых адаптеров составляет около 13,2 млн IOPS, пропускная способность — 70,7 Гбайт/с, а задержка записи — всего 42 мкс.

OpenFlex Data24 совместима с Open Composable API и может быть реализована как часть компонуемой дезагрегированной инфраструктуры. Внедрение OpenFlex Data24 не влечёт за собой дополнительные расходы. Наоборот, Western Digital оценивает сокращение расходов на 17 % по сравнению с дисковыми полками с SAS-интерфейсом.

Постоянный URL: http://servernews.ru/1042283
17.06.2021 [01:48], Владимир Мироненко

Kalray представила DPU K200-LP для NVMe-oF СХД: 2 × 100GbE, 12 Гбайт/с и 2 млн IOPS

Kalray представила низкопрофильный адаптер K200-LP для построения систем хранения данных NVMe-oF. K200-LP пополнил семейство полностью программируемых многоцелевых DPU Kalray на базе уникальных процессоров Coolidge MPPA (Massively Parallel Processor Array) собственной разработки.

K200-LP, по словам разработчиков, является идеальным решением для производителей устройств хранения данных и поставщиков облачных услуг для создания устройств хранения следующего поколения, поскольку превосходит аналогичные решения с точки зрения производительности на Ватт и на доллар. K200-LP полностью оптимизирована для растущего рынка решений хранения на базе NVMe и NVMe-oF, от облака до периферии.

Kalray

Kalray

Kalray K200-LP представляет собой низкопрофильную карту с двумя портами 100GbE (QSFP28) и интерфейсом PCIe 4.0 x16. Она оснащена 80-ядерным процессором MPPA, работающим на частоте до 1,2 ГГц, и от 8 до 32 Гбайт DDR4-3200. Карта способна обслуживать до 64 NVMe SSD и обеспечивает пропускную способность на уровне 12 Гбайт/с при последовательном чтении/записи и порядка 2 млн IOPS на случайных операциях. При этом средняя задержка составляет всего 30 мкс.

Новинка совместима со стандартами RoCE v1/v2 и NVMe/TCP, а поддержка MPPA уже есть в Linux 5.x. Для разработки ПО предоставляется фирменный SDK AccessCore. K200-LP производится тайваньской Wistron и уже доступна для приобретения. Ранее компании совместно представили СХД FURIO1200 на базе DPU K200.

Постоянный URL: http://servernews.ru/1042196
07.06.2021 [14:53], Андрей Галадей

В ядре Linux 5.14 появится поддержка разгрузки NVMe/TCP

В сетевой подсистеме будущего ядря Linux 5.14 должна появиться поддержка разгрузки (offload) NVMe/TCP, одного из транспортов для NVMe-oF. Речь идёт о снижении нагрузки на CPU за счёт того, что обработка сетевых данных будет происходить в контроллере сетевого адаптера. Поддерживается как разгрузка TCP, так и собственно NVMe/TCP.

Первые замеры показывают, что такой подход позволил снизить нагрузку на сервере с процессором AMD EPYC 7402 с 15,1% до 4,7%. Для решения на базе Intel Xeon Gold 5122 нагрузка упала с 16,3% до 1,1%. Также уменьшилась задержка при передаче пакетов — в среднем со 105 до 39 мкс. В обоих случаях использовался сетевой контроллер Marvell серии FastLinQ.

Не исключено, что в будущем появятся реализации и для других сетевых контроллеров. В целом, новая подсистема разрабатывается как ещё один универсальный уровень абстракции tcp-offload, с которым могут взаимодействовать уже конкретные драйверы производителей адаптеров.

Постоянный URL: http://servernews.ru/1041351
04.06.2021 [02:43], Владимир Агапов

В спецификации NVMe 2.0 официально вошла поддержка HDD

Вчера был опубликован релиз спецификаций NVMe 2.0. Из скромного протокола для блочных устройств хранения данных, использующих PCI Express, NVMe эволюционирует в один из самых важных и универсальных протоколов для хранилищ практически любого типа. Новые спецификации будут способствовать развитию экосистемы устройств NVMe: SSD, карт памяти, ускорителей и даже HDD.

Вместо базовой спецификации для типовых PCIe SSD и отдельной спецификации NVMe-over-Fabrics (NVMe-oF), версия 2.0 изначально разработана как модульная и включает целый ряд отдельных стандартов: базовый набор (NVMe Base), отдельные наборы команд (NVM, ZNS, KV), спецификации транспортного уровня (PCIe, Fibre Channel, RDMA, TCP) и спецификации интерфейса управления (NVMe Management Interface). Вместе они определяют то, как программное обеспечение хоста взаимодействует с накопителями и пулами хранения данных через интерфейсы PCI Express, RDMA и т.д.

Базовая спецификация теперь охватывает и локальные устройства, и NVMe-oF, но является намного более абстрактной и не привязанной к реальному миру — было изъято столько всего, что её уже недостаточно для определения всей функциональности, необходимой для реализации даже простого SSD. Реальные устройства должны ссылаться ещё как минимум на одну спецификацию транспортного уровня и на одну спецификацию набора команд. В частности, для типовых SSD, к которым все привыкли, это означает использование спецификации транспорта PCIe и набора команд блочного хранилища.

Три стандартизированных набора команд (блочный доступ, ZNS и Key-Value) охватывают области применения от простых твердотельных накопителей с «тонкими» абстракциями над базовой флеш-памятью до относительно сложных интеллектуальных накопителей, которые берут на себя часть задач по управлению хранением данных, традиционно выполнявшихся программным обеспечением на хост-системе. При этом различным пространствам имен, расположенным за одним контроллером, дозволено поддерживать разные наборы команд.

В NVMe 2.0 также добавлен стандартный механизм управления пулами хранения данных, который позволяет более тонко управлять нагрузкой в зависимости от производительности, ёмкости и выносливости конкретных устройств. Иерархия пулов также была расширена ещё одним уровнем доменов, внутри которых теперь существуют группы, где, в свою очередь, находятся отдельные наборы NVM-устройств.

Будущие наборы команд, например для вычислительных накопителей (computational storage), все еще находятся в стадии разработки и пока не готовы к стандартизации, но новый подход NVMe 2.0 позволит легко добавить их при необходимости. В принципе, в состав NVMe мог бы войти и стандарт Open Channel, но отрасль считает, что парадигма зонированного хранения обеспечивает более разумный баланс, и интерес к Open Channel SSD ослабевает в пользу ZNS-решений.

Из прочих изенений в NVMe 2.0 можно отметить поддержку 32-бит и 64-бит CRC, новые правила безопасного отключения устройств в составе общих хранилищ (при доступе через несколько контроллеров), более тонкое управление правами доступа — можно разрешить чтение и запись, но запретить команды, меняющие настройки или состояние накопителя — и дополнительные протоколы, касающиеся обновления прошивок.

Также в NVMe 2.0 появилась явная поддержка жёстких дисков. Хотя маловероятно, что HDD в ближайшее время перейдут на использование PCIe вместо SAS или SATA, поддержка таких носителей означает, что в будущем предприятия смогут унифицировать свои SAN c помощью NVMe-oF и отказаться от старых протоколов, таких как iSCSI.

В целом, NVMe 2.0 приносит не та уж много новых функций, как это было с прошлыми версиями. Однако сама реорганизация спецификации поощряет итеративный подход и эксперименты с новыми функциями. Так что в ближайшие несколько лет, вероятно, обновления будут менее масштабными и станут выходить чаще.

Постоянный URL: http://servernews.ru/1041208
25.05.2021 [14:50], Сергей Карасёв

Viking представила All-Flash СХД VDS2249R с поддержкой NVMe-oF

Компания Viking Enterprise Solutions, подразделение Sanmina Corporation, анонсировала систему хранения данных VDS2249R, рассчитанную на использование в корпоративных сетях. Решение относится к классу NVMe-oF — NVMe over Fabric Enclosure.

Устройство выполнено в формате 2U. Габариты составляют 87 × 448 × 685 мм. Возможна установка 24 твердотельных накопителей PCIe 3.0 NVMe формата 2,5 дюйма в исполнении U.2 (SFF8639), в том числе двухпортовых.

Здесь и ниже изображения Viking Enterprise Solutions

Здесь и ниже изображения Viking Enterprise Solutions

Новинка состоит из двух модулей (контроллеров), каждый из которых поддерживает три карты расширения PCIe 3.0 x16. В зависимости от конфигурации применяется блок питания мощностью 1000 или 1600 Вт. Возможна горячая замена модулей, накопителей и БП.

Система хранения будет доступна в двух модификациях — с двумя сетевыми портами 100 GbE и шестью портами 100 GbE. Говорится, что устройство обеспечивает оптимальную производительность с небольшими задержками.

Для модели VDS2249R доступен программный интерфейс управления с гибкими настройками. Можно просматривать статистику производительности, осуществлять мониторинг работы подсистем питания и охлаждения, отслеживать возможные проблемы и пр. Поставки новинки начнутся в июне нынешнего года. Более подробная информация о хранилище доступна здесь.

Постоянный URL: http://servernews.ru/1040352
22.03.2021 [17:17], SN Team

NVMe-oF™: эволюция архитектуры хранения в центрах обработки данных

Сегодня объемы создания и потребления данных продолжают неуклонно расти. Согласно данных International Data Corporation (IDC) за 2020 год, за пять лет — до 2023 года — совокупный темп годового роста (CAGR) получения, копирования и потребления данных составит 26%. Наряду с ростом и усложнением рабочих экосистем, приложений и массивов данных для ИИ/IoT, данный тренд указывает организациям на необходимость обеспечить бóльшую масштабируемость, эффективность, производительность и быстродействие систем хранения данных (СХД) при оптимальной совокупной стоимости владения TCO.

NVMe™ — текущее состояние

В глобализированной цифровой экономике счет идет на микросекунды. Достижение максимальной производительности и доступности критических приложений в сфере гипермасштабируемых облачных вычислений и ЦОД реализуется посредством постоянной работы по устранению узких мест и удовлетворению беспрецедентно растущей потребности в обработке данных. В таких условиях потребители ускоряют внедрение решений NVMe и NVMe over Fabrics (NVMe-oF). Эксперты отраслевой аналитической фирмы IDC предсказывают, что гиперскейлеры, OEM-производители и организации-конечные пользователи продолжат переход со старых интерфейсов SATA и SAS. Ожидается, что в 2020 году на NVMe придется более 55% от поставок SSD-накопителей корпоративного класса, а совокупный годовой рост поставок NVMe с 2018 по 2023 год составит 38%.

Огромное множество ключевых бизнес-функций теперь опираются на высокопроизводительное прикладное ПО, поэтому все больше центров обработки данных по всему миру внедряют NVMe. Компания Western Digital давно занимается инновациями в области флэш-памяти NAND и уже сейчас предлагает комплексную линейку SSD-накопителей и новых решений к построению фабрик данных. Таким образом, Western Digital располагает всем необходимым, чтобы помочь клиентам полностью реализовать потенциал технологии NVMe.

Платформа хранения данных OpenFlex Data24 NVMe-oF

Хотя флэш-накопители с NVMe невероятно повышают производительность систем хранения DAS, SAN и NAS, традиционная архитектура центров обработки данных не позволяет полностью реализовать возможности твердотельных накопителей NVMe. Это приводит к недоиспользованию ценных ресурсов хранения, неэффективной сегментации данных и удорожанию эксплуатации.

OpenFlex Data24, новая JBOF СХД, снимает данные ограничения за счет использования всей пропускной способности SSD-накопителей Ultrastar с поддержкой NVMe сразу несколькими вычислительными узлами, объединёнными в Ethernet-фабрику (NVMe-oF 1.0a) с низкими задержками так, что скорость работы с JBOF сравнима со скоростью работы локального NVMe-накопителя, подключенного к PCIe-шине сервера.

Такой подход обеспечивает максимальное количество операций ввода-вывода в секунду (IOPS). Также повышаются гибкость при необходимости увеличить емкость и эффективность использования дезагрегированного хранилища на флэше, что позволяет достичь большей производительности в условиях самых напряженных рабочих нагрузок. Сбалансированная архитектура СХД предотвращает выделение пространства сверх физической емкости хранилищ (over-subscription) и обеспечивает стабильную производительность NVMe.

В систему OpenFlex Data24 может быть установлено до 24 NVMe SSD-накопителей Ultrastar DC SN840 — в компактном 2U-шасси можно получить до 368 Тбайт ёмкости. Система идеально подходит для увеличения емкости серверных хранилищ или развертывания масштабируемых программно-определямых систем хранения (SDS). В комплексный дизайн системы также входят NVMe-oF-контроллеры RapidFlex с удаленным доступом к памяти (RDMA), которые при крайне низком энергопотреблении обеспечивают отменную производительность сетевых соединений.

По 100-гигабитной сети Ethernet можно подключить до шести вычислительных узлов без использования внешнего коммутатора. Задержка при работе контроллеров RapidFlex составляет менее 500 наносекунд, что обеспечивает расчетную производительность системы на уровне 13 млн IOPS и 70 Гбайт/c при установке в OpenFlex Data24 шести сетевых адаптеров.

Система OpenFlex Data24 спроектирована для обеспечения высокой доступности и уровня надежности промышленного класса. Она может устанавливаться в качестве совместно используемого хранилища в составе высокопроизводительной IT-инфраструктуры или использоваться в качестве дезагрегированного ресурса в виртуализированных системах хранения. Данная система полностью совместима с удостоенной наград F-серией OpenFlex — единственном в мире решении для построения открытых, компонуемых дезагрегированных инфраструктур (CDI).

Подробная информация доступна в блоге Western Digital: Пять причин начать планировать переход на NVMe-oF™ уже сегодня

Компания Western Digital продолжает создавать инновации, открывая новые научные и технологические горизонты, чтобы разрабатывать продукты для повышения эффективности и производительности инфраструктуры обработки данных с лучшей в своем классе TCO. Широкий набор решений Western Digital для обработки данных включает линейку HDD- и SSD-накопителей Ultrastar, HDD- и SSD-накопители WD Gold®, открытую платформу для компонуемых инфраструктур OpenFlex NVMe-oF, системы хранения Ultrastar, контроллеры RapidFlex NVMe-oF, решения Ultrastar для расширения RAM.

Western Digital также принимает активное участие в инициативе Zoned Storage по созданию стандартизированной открытой технологии зонирования накопителей с целью эффективного масштабирования ЦОДов. Новая технология основана на совместном применении HDD с черепичной магнитной записью (SMR) и SSD с поддержкой зонирования (ZNS).

Постоянный URL: http://servernews.ru/1035442
18.03.2021 [22:15], Сергей Карасёв

Cheetah RAID Storage представила защищённый сервер хранения на 20 накопителей NVMe U.2

Компания Cheetah RAID Storage анонсировала любопытное решение под длинным названием Rugged NVMe 2U Server/Storage ALL-IN-ONE W/2 Removable Canisters. Это сервер хранения данных, рассчитанный на работу с твердотельными накопителями NVMe U.2. Новинка имеет высоту 2U и глубину 27".

Шасси рассчитано на работу со стандартными платформами на базе Intel Xeon Broadwell и Skylake, а также AMD Naples. Каждому процессору «полагается» один PCIe-коммутатор Broadcom PEX9781 или PEX9797, который, в свою очередь, управляет 48 линиями PCIe 3.0 для накопителей и сетевых адаптеров с поддержкой RDMA/RoCE/iWARP. Такая схема подключения позволяет снизить взаимодействие между CPU.

Сервер содержит два контейнера, каждый из которых может быть оборудован десятью 2,5-дюймовыми накопителями NVMe U.2. Предусмотрена возможность установки двух системных 2,5" накопителей с поддержкой «горячей» замены. Также возможна установка двух или четырёх сетевых адаптеров PCIe 3.0 x16. Опционально доступно посадочное место под модуль OCP 2.0 PCIe 3.0 x16. Питается система от блоков питания мощностью от 1200 до 1600 Вт с резервированием.

Платформа разработана с учётом возможностей кастомизации под нужды конкретных заказчиков, в том числе OEM-клиентов. Подробно с техническими характеристиками новинки можно ознакомиться здесь. Отметим, что Cheetah RAID Storage является давним поставщиком СХД для спецслужб и госорганов США и НАТО, а также производителям систем видеонаблюдения.

Постоянный URL: http://servernews.ru/1035177
16.03.2021 [14:58], Юрий Поздеев

Huawei NOF+: «умная» сеть E2E NVMe-oF для ЦОД

На партнерской конференции «Enjoy Growth, Win Together», которая прошла 3 марта в Москве, Huawei представила сразу несколько важных обновлений и новых решений для ЦОД. Среди них — реализация E2E NVMe-oF (NoF+) для ЦОД нового поколения, которая не только быстрее традиционных FC SAN, но и гораздо выгоднее и проще в обслуживании. Что революционного в новом решении и почему на него нужно обратить внимание?

Исторически так сложилось, что в ЦОД нередко применяются отдельные SAN-сети (для хранения данных) на базе протокола Fibre Channel и сеть передачи данных на базе Ethernet. Обычно они изолированы друг от друга, а для управления и доступа используются отдельные коммутаторы/маршрутизаторы. Были попытки объединить эти сети, пустив FC поверх Ethernet (FCoE), однако большим успехом они не увенчались — устройства получались дорогие и сложные, а задержки доступа росли до совершенно неприличных величин.

Два главных преимущества Fibre Channel над Ethernet: низкие задержки при доступе к данным и гарантированная доставка пакетов. И этого хватало долгие годы, но, как говорится, «все течет, все меняется». Возможностей интерфейса SAS 12G было вполне достаточно для механических накопителей, но он не мог в полной мере обеспечить необходимую пропускную способность для новых твердотельных накопителей, а лишние уровни абстракции заметно замедляли операции ввода/вывода.

Все изменилось с появлением нового поколения All-flash СХД, в которых применяются исключительно NVMe-накопители. Такие SSD требовали новых решений и повышения скорости каналов связи. Возможностей FС 16/32G тоже явно не хватало и вовремя подоспевший стандарт FC 64G на некоторое время спасет ситуацию, однако не до конца — реализовать весь потенциал NVMe можно только при использовании прямого доступа к ним, например, по RDMA.

С выпуском СХД Dorado V6 Huawei задала новый уровень быстродействия для all-flash массивов, что обеспечивается не только большей вычислительной мощностью контроллеров, но и продуманной архитектурой решения. Huawei одна из немногих компаний, которая сама выпускает SSD, процессоры, интерфейсные платы, сетевые компоненты и серверы, что позволяет оптимально выстроить от начала до конца — то есть от места хранения данных до их конечных потребителей — все взаимодействия, причём без лишних посредников и ограничений.

Использование собственных Arm-процессоров совместно с технологиями ИИ позволяет добиться потрясающей производительности и отказоустойчивости в СХД серии Dorado V6. Однако наличие быстрых СХД — это всего лишь полдела. Им необходима быстрая и надёжная сеть доставки, и вот тут-то на сцену и выходит концепция E2E NVMe (End-to-End NVMe). В данном случае используется NVMe-oF на базе технологии RoCE v2. Для работы последней требуется сеть, которая была бы быстрой, надёжной, имела низкие задержки и передавала данные без потерь.

Для построения такой сети требуются современные решения. И Huawei уже имеет в своем портфеле подходящие коммутаторы уровня ЦОД с портами 25/50/100/200/400 Гбит/с, с поддержкой RoCEv2, алгоритмами iLossless, long-distance RoCE и всех необходимых для уровня ядра функций. Однако компания пошла дальше, и теперь её новейшие коммутаторы серии Cloud Engine 16800, 6800 и 8800 поддерживают уникальные технологии NoF+ и AI Fabric, которые, по заверениям производителя, в случае NVMe-of СХД может увеличить IOPS до 85%.

AI Fabric в реальном времени отслеживает работу сети и устройств в ней и корректирует их поведение. Одной из ключевой составляющих AI Fabric является технология iLossless, которая предотвращает потерю пакетов, вызванную перегрузкой сети. Специальный алгоритм препятствует попадание избыточных данных в сеть, защищая буфер устройства или канал от перегрузки.

Если с технологиями понятно, то что с готовыми решениями и ценами на них? Использование в ЦОД единой сети без потерь данных и единых высокопроизводительных коммутаторов вместо отдельных для Ethernet и SAN позволяет значительно экономить бюджет. По словам инженеров компании, 25 Гбит/с RoCE производительнее и экономически эффективнее классического FC 32G в пересчете на параметры IOPS/Latency, а 100 Гбит/с RoCE уже задает новый стандарт в производительности, и всё это при меньшей стоимости общего владения инфраструктурой и унификации с уже имеющимися сетями в ЦОД.

Все СХД серии Dorado V6 поддерживают опциональные RoCE-интерфейсы, интерфейсные карты для серверов с поддержкой RoCE тоже есть, таким образом, с внедрением связующего звена в виде высокопроизводительных коммутаторов Cloud Engine 16800, 8800 и 6800 «пазл» складывается полностью в интеллектуальную высокопроизводительную систему, которая реализует принцип End-to-End NVMe от накопителя до хоста.

На партнерской конференции для демонстрации технологии установили отдельный стенд, на котором сравнивалась производительность одинаковых СХД с разным подключением серверов: через классический Fibre Channel 32G и 25GbE (с использованием новых коммутаторов и RoCE). Цифры производительности IOPS демонстрировались в режиме реального времени и преимущество новой технологии было наглядно выражено: 800К+ IOPS через RoCE и 600К+ IOPS через FC 32G.

Нужно отметить, что обе СХД были полностью идентичные и тесты были запущены с одинаковой нагрузкой на одинаковом же оборудовании. Проведя немало времени возле этого стенда, мы смогли убедиться, что показатели, которые демонстрирует новое решение, не только значительно превосходят FC 32G, но и стабильны на всем протяжении тестирования.

Постоянный URL: http://servernews.ru/1034293
Система Orphus