Материалы по тегу: фотоника

03.09.2020 [18:53], Владимир Мироненко

Анонсирована первая в мире общедоступная фотонная квантовая облачная платформа Xanadu Quantum Cloud

Канадский разработчик фотонных квантовых вычислений Xanadu объявил о выходе первой в мире общедоступной фотонной квантовой облачной платформы Xanadu Quantum Cloud. Разработчики получат доступ к фотонно-квантовым процессорам на основе шлюзов Xanadu в 8-, 12-, а вскоре и в 24-кубитовых системах.

Квантовые компьютеры на основе фотоники имеют ряд преимуществ по сравнению с другими квантовыми платформами. Квантовые процессоры Xanadu работают при комнатной температуре. Их можно легко интегрировать в существующую телекоммуникационную инфраструктуру на основе оптоволокна. Они также обеспечивают масштабируемость и отказоустойчивость, благодаря надёжным, устойчивым к ошибкам физическим кубитам и гибкости в разработке кодов исправления ошибок.

Главное отличие типа кубита Xanadu от других квантовых систем заключается в том, что он основан на сжатых состояниях — особом типе света, генерируемом собственными кремниевыми фотонными устройствами, интегрированными в чип. «Мы считаем, что фотоника предлагает наиболее жизнеспособный подход к универсальным отказоустойчивым квантовым вычислениям с возможностью Xanadu объединять в сеть большое количество квантовых процессоров. Мы рады предоставить эту экосистему, первую в мире как для квантовой, так и для классической фотоники», — заявил Кристиан Видбрук (Christian Weedbrook), основатель и генеральный директор Xanadu.

В настоящее время партнёры и клиенты Xanadu тестируют решения в предварительной версии Xanadu Quantum Cloud. В их числе ведущие академические учреждения, квантовые стартапы и крупные национальные лаборатории, включая Creative Destruction Labs, Scotia Bank, BMO и Национальную лабораторию Ок-Ридж (ORNL). Компания теперь намерена расширить доступ к платформе ряду новых корпоративных клиентов, которые стремятся использовать квантовые вычисления для решения сложных проблем.

Помимо Xanadu Quantum Cloud, разработчики смогут использовать инструменты Xanadu с открытым исходным кодом, доступные на Github. К ним относятся Strawberry Fields, её кроссплатформенная библиотека Python для моделирования и выполнения программ на квантовом фотонном оборудовании, и PennyLane, программная библиотека для квантового машинного обучения, квантовых вычислений и квантовой химии. Для этих платформ предлагается широкий спектр руководств и учебных материалов, которыми смогут воспользоваться специалисты с любым уровнем опыта, чтобы начать разработку и эксперименты с квантовыми приложениями.

Команда Xanadu сейчас занимается разработкой следующего поколения фотонных квантовых компьютеров. «Мы считаем, что сможем примерно удваивать количество кубитов в наших облачных системах каждые шесть месяцев», — заявил Видбрук.

Внедрение квантовых вычислений на предприятиях находится на ранней стадии развития, но доступ к фотонным квантовым вычислениям через облако впервые предоставит разработчикам из разных отраслей и академических кругов возможность изучить потенциальные бизнес-приложения.

В июне 2019 года Xanadu объявила о раунде финансирования серии A в размере $32 млн. На данный момент общий объём инвестиций в Xanadu составляет $45 млн.

Постоянный URL: http://servernews.ru/1019821
19.08.2020 [20:39], Алексей Степин

Коммутатор Intel Tofino2: 12,8 Тбит и 6 млрд пакетов в секунду

О том, что Intel видит будущее любой сетевой инфраструктуры в фотонике, уже известно — компания рассказала об этом на мероприятии Intel Architecture Day. Модули с оптическими трансиверами планируется устанавливать в одной EMIB-упаковке с традиционной электроникой.

Планируется также максимально унифицировать топологию сетей, причём на всех уровнях, от межпроцессорных шин до глобальных каналов, соединяющих расположенные в разных местах ЦОД. Сердцем любой сети, разумеется, являются коммутаторы, Intel делает ставку на программируемые решения в рамках архитектуры Tofino2. О ней и пойдёт речь.

Если на Intel Architecture Day были даны лишь сведения общего характера о том, как компания видит сети будущего, то на Hot Chips 32 «синие» рассказали в деталях о новой архитектуре сетевых коммутаторов Tofino2. Этот проект развивался в рамках приобретения Intel активов компании Barefoot Networks, в своё время прославившейся в узких кругах выпуском полностью аппаратного, со своей ОС на борту, сетевого контроллера Killer NIC.

Эта компания занималась и разработкой высокоскоростных сетевых коммутаторов. Сейчас, когда с момента приобретения Barefoot Networks прошло чуть более года, Intel готова представить подробные результаты. Архитектура Tofino2 следует современным тенденциям и не является жёстко фиксированной — она относится к категории программируемых решений, что должно обеспечить существенную степень гибкости при создании сетей нового поколения.

И речь идёт не только о теории: Intel уже имеет на руках работоспособные системы на базе Tofino2. Как Intel, так и Barefoot пришли к идее программируемого коммутатора ранее, ещё до сделки. Надо сказать, что Tofino2 не является процессором в прямом значении термина; разумеется, эти чипы будут содержать блоки фиксированной логики. В частности, это касается блоков сериализации-десериализации (трансиверов, SerDes).

А вот уровень MAC и основной конвейер обработки у Tofino2 обещают быть программируемыми. За счёт этого Intel надеется уменьшить накладные расходы на масштабировании в новых коммутаторах. Добавление новых функций, по мнению разработчиков, должно обойтись в 20-30% прироста в площади кристалла и уровне энергопотребления, против десятикратного у вероятных аналогов, построенных исключительно на основе фиксированной логике.

Кроме того, за счёт такой программируемости архитектура Tofino позволяет обрабатывать пакеты любого сетевого протокола. Уже в первой 16-нм версии «кремния» Intel удалось добиться показателей производительности на уровне 6,5 Тбит/с за счёт реализации программируемой части на базе языка P4, который специально создан для сетевых устройств вроде коммутаторов и маршрутизаторов.

Это делает решения Tofino сравнимым по классу с чипами Broadcom Tomahawk и Trident, а в некоторых отношениях они превосходят их. Это относится как к производительности и более низкому уровню энергопотребления на порт, так и к более продвинутой системе телеметрии и удалённого управления.

Поколение Tofino2, о котором идёт речь, демонстрирует ещё более впечатляющие характеристики: 12,8 Тбит/с и 6 миллиардов пакетов в секунду. Оно использует модную сейчас мультичиповую компоновку (2,5D CoWoS, аналогична используемой в графических чипах) и производится с использованием 7-нм техпроцесса TSMC. В составе базовой части имеется четыре «ядра», каждое с производительностью 3,2 Тбит/с и единый буфер объёмом 64 Мбайт.

Также внутри реализовано 32 интерфейса MAC класса 400G; самый производительные аналогт имеют столько же. В отличие от соперников, блоки трансиверов (SerDes) у Tofino2 выполнены отдельными кристаллами-тайлами, каждый из которых содержит 64 канала 56G-PAM4. Контроллер PCI Express расположен в основном кристалле и он, увы, ограничен версией 3.0.

За счёт архитектуры VLIW Tofino2 очень быстро производит анализ пакетов и принимает решение об их дальнейшей «судьбе», для этого, помимо прочего, в составе чипа имеются и функции «машинного обучения» — процессор ведет метрики и статистику буферов ввода-вывода. Объёмистый и единый для всех «конвейеров» буфер пакетов используется для скоростного управления трафиком, задержка QoS не превышает 1,68 наносекунды для 64-байтного пакета.

Но, пожалуй, одним из самых главных новшеств в Tofino2 в сравнении с первым поколением программируемых коммутаторов Intel/Barefoot стало наличие установленных в единой упаковке с основным процессором оптических модулей ввода-вывода. Они соответствуют всем современным стандартам и способны обеспечивать работу на скорости 400 Гбит/с, актуальной на сегодня.

Другие разработчики кремния для высокоскоростных коммутаторов полагают, что фотоника такого уровня пока является «ранней пташкой» и будет востребована через одно-два поколения, но у Intel уже есть рабочая технология, которая успешно демонстрируется. И не только демонстрируется, но уже поставляется крупнейшим клиентам компании. Похоже, за программируемыми коммутаторами действительно лежит будущее.

Может быть, Tofino2 и несколько опережает своё время, но его архитектура является удобным и универсальным строительным блоком, позволяющим реализовывать владельцам поддержку новых функций малой кровью, а не заменой всех коммутаторов в ЦОД новые. Вопрос лишь в своевременном появлении нового программного обеспечения.

Постоянный URL: http://servernews.ru/1018646
14.08.2020 [18:45], Алексей Степин

От микрон до сотен миль: Intel видит будущее шин и сетей в фотонике

В этом году мероприятие Intel Architecture Day выдалось богатым на различного рода анонсы новых технологий, начиная с техпроцессов и заканчивая описанием того, как Intel видит будущее сетей и интерконнектов. Вопрос наиболее эффективного объединения компонентов вычислительных комплексов в единое, эффективно работающее целое стоит давно, но именно сейчас на него самое время дать ответ.

Проблема межсоединений (interconnect) существует сразу на нескольких уровнях: от упаковки кристаллов ЦП, ГП и различных ускорителей до уровня ЦОД и даже более высокого уровня, включающего в себя и высокоскоростные сети нового поколения. На промежуточном уровне, как мы уже знаем, Intel собирается решить проблему межпроцессорного взаимодействия с помощью протоколов CXL и DSA, причём CXL сможет использовать уже имеющуюся физическую инфраструктуру PCI Express.

Этим он напоминает подход, реализованный AMD в EPYC, которые общаются между собой посредством PCIe, но подход Intel является более универсальным и разносторонним. Data Streamig Accelerator же поможет при взаимодействии одного узла вычислительного кластера с другим; об этом подробнее рассказывалось ранее.

На самом глубинном уровне отдельных чипов Intel видит будущее за совмещением электроники и фотонных технологий. Предполагается, что функции ввода-вывода удастся переложить на оптический интерфейс, чиплет которого будет устанавливаться на общую с вычислительными кристаллами подложку EMIB. Дебютировала эта технология соединений достаточно давно, ещё в момент анонса процессоров Kaby Lake-G, в которых посредством EMIB были объединены кристаллы Kaby Lake, HBM-памяти и графического ускорителя AMD Vega. Но вот до оптики дело не дошло.

Почему Intel выбирает фотонику? Ответов на этот вопрос несколько: во-первых, рост пропускной способности при использовании традиционных электрических соединений имеет предел, а фотоника при использовании мультиволновых лазеров способна обеспечить порядка 1 Тбит/с на волокно. Во-вторых, фотоника позволяет использовать более длинные пути соединений — оптика не столь беспощадна к расстояниям, как медь и прочие металлы на сопоставимых скоростях. При этом плотность размещения интерфейсов может быть в шесть раз выше, нежели у PCI Express 6.0 и это при сопоставимых показателях латентности.

Переход на фотонику потребует внедрения новых высокоскоростных оптических модулей и коммутаторов. Здесь Intel полагается на платформу Barefoot Tofino 2, включающую в себя элементы фотоники. Работоспособные прототипы программируемых коммутаторов на базе Tofino 2 с пропускной способностью 12,8 Тбит/с были продемонстрированы компанией ещё весной этого года. 16 оптических каналов обеспечивали функционирование четырёх портов 400G. Использование новых, более скоростных SerDes-блоков позволит увеличить эти показатели.

Важным компонентом новой сетевой платформы является открытость (буквально переход к решениям open source) и программируемость, как на уровне коммутатора, так и конечных точек. На нижнем уровне находятся шины, связывающие CPU, xPU (различные ускорители) и память. Данные к ним и от них проходят через «умные» сетевые адаптеры (SmartNIC), которые сами по себе могут обрабатывать «на месте» часть проходящей через них информации. Такие адаптеры активно развиваются уже сейчас. 

На физическом уровне, как уже было сказано, ставка сделана на фотонику и оптические соединения. Выпуск трансиверов класса 400G и 800G на её основе уже не за горами. Ещё один важный компонент будущей сети — всестороння и повсеместная телеметрия, которая поможет оптимизировать работу всех компонентов на лету. Использование такой платформы способно не только ускорить производительность в конкретных сценариях, но в перспективе и упростить инфраструктуру ЦОД.

В отличие от «процессороцентричной», «сетецентричная» модель представляет всю систему в виде набора унифицированных вычислительных блоков и блоков хранения данных, объединённых сетевой топологией типа «leaf-spine». В качестве сроков внедрения новой архитектуры Intel называет 2025 год. Вполне возможно, что она сможет, как было сказано в презентации, объединить буквально всё на расстоянии от микрон до сотен миль.

Постоянный URL: http://servernews.ru/1018282
24.05.2020 [20:46], Юрий Поздеев

Nokia Photonic Service Engine V: новые решения для сетей класса 400G и 800G

Скорости передачи информации постоянно растут и стандарт 100G, который еще недавно казался чем-то невообразимым, уже недостаточно быстр для современных потребностей сетей 5G и облачных сервисов. Наступает эпоха 400G и близится 800G, однако производители уже начинают испытывать проблемы с физическими ограничениями оптики и материалов, ведь законы физики никто не отменял.

Недавно Nokia приобрела компанию Elenion, которая занималась разработкой оптических модулей CSTAR. Таким образом Nokia смогла ускорить свои разработки и выпустить новое решение Nokia WaveFabric Elements, основанное на чипах DSP и оптических технологиях 400G. Продукты на базе новых решений станут доступны в четвёртом квартале этого года. 

Семейство Photonic Service Engine V (PSE-V) представлено двумя решениями:

  • PSE-Vc с пониженным энергопотреблением предназначен для систем 400ZR/ZR+ в форм-факторе QSFP-DD и более производительном многофункциональном варианте 400G в форм-факторе CFP2-DCO. На его основе изготавливаются оптические приемо-передатчики среднего и дальнего радиуса действия.
  • PSE-Vs — для высокопроизводительных модулей с поддержкой скоростей от 400G до 800G (64QAM).

Nokia не единственная компания, которая разрабатывает оптические решения 5 поколения, о своих разработках также заявили Ciena, Infinera, Huawei, Acacia/Cisco и ZTE, однако по информации от Nokia, чипы PSE-V будут на 15% компактнее и потреблять на 20% меньше энергии, чем решения конкурентов.

С учетом постоянно растущего объема информации, новые решения Nokia будут востребованы в ЦОД облачных провайдеров и сотовых операторов, предлагающих сети стандарта 5G, который уже завоевал популярность не только среди частных абонентов, но и среди промышленных предприятий для построения IoT и систем видеонаблюдения.

Технологии автономных автомобилей, автоматизация железнодорожных перевозок, телеметрия и видео-аналитика тоже не могут развиваться без высокоскоростных сетей 5G, поэтому спрос на данное решение Nokia прогнозирует огромный, остается только подождать полномасштабного внедрения этой технологии. 

Постоянный URL: http://servernews.ru/1011725
06.03.2020 [10:55], Геннадий Детинич

Кремниевая фотоника в деле: Intel представила первый в отрасли интегрированный оптический Ethernet-коммутатор

Компания Intel откладывала этот момент пять лет. Коммерческие поставки первых решений с интегрированными компонентами так называемой кремниевой фотоники должны были начаться в 2015 году. Но зрелый продукт компания показала только сейчас. Им стал первый в отрасли совмещенный оптический Ethernet-коммутатор с многокристальным сетевым микропроцессором с прямым оптическим входом.

Медные линии связи не могут позволить наращивать плотность каналов связи и понижать потребление интерфейсов. На это способна только оптика. И не просто оптика, а интегрированная в сетевые процессоры.

Жизненно важно убрать электрические цепи-посредники при передаче данных от оптического порта на панели коммутатора в процессор. Делает это новый интегрированный (совмещённый) чип программируемого Ethernet-коммутатора компании.

Совмещённое решение представляет собой многокристальную упаковку с сердцем в виде ASIC Barefoot Tofino 2. Это программируемый Ethernet-коммутатор, который разработала компания Barefoot Networks. Её компания Intel приобрела в прошлом году. На одной с коммутатором подложке расположено 8 «движков» Intel на базе кремниевой фотоники. Каждый из них способен работать с пропускной способностью до 1,6 Тбит/с.

Данные заводятся в «движок» в виде оптических сигналов по четырём 400-Гбит/с портам (400GBase-DR4). На выходе «движка» обычные электрические сигналы, которые уходят в SerDes-порты коммутатора. Тем самым коммутатор Barefoot Tofino 2 может обрабатывать данные со скоростью 12,8 Тбит/с. Возможности преобразователей SerDes коммутатора можно менять в сторону увеличения пропускной способности или в сторону экономии потребления и, соответственно, задавать диапазон возможностей коммутатора.

Следующее поколение коммутаторов Barefoot Tofino NG обещает увеличить скорость работы до 25,6 Тбайт/с и даже свыше 51,2 Тбайт/с. Вероятно, для этого в упаковке коммутатора могут быть размещены две ASIC.

Постоянный URL: http://servernews.ru/1005320
18.02.2020 [19:08], Геннадий Детинич

Imec представил энергоэффективную архитектуру для высокоскоростных оптических трансиверов

Чтобы справиться с растущим спросом на потребление информации, в течение следующих лет центры обработки данных будут модернизировать свои сети. Прежде всего, это волоконно-оптические каналы, скорость которых должна расти, а потребление, в пересчёте на единицу переданных данных, снижаться.

Необходимого результата поможет добиться новая разработка Imec.

SiGe BiCMOS ЦАП (Imec)

SiGe BiCMOS ЦАП (Imec)

Бельгийский исследовательский центр Imec совместно с Гентским университетом для демонстрации на конференции ISSCC2020 представили первый в своём роде высокоскоростной кремниевый аналоговый временной перемежитель (интерливер) сигнала, решение для временного уплотнения импульсов. Разработка обеспечивает скорость передачи сигналов в канале до 100 ГБод (200 Гбит/с) при потребляемой мощности всего 700 мВт с использованием модуляции PAM-4 (амплитудно-импульсная модуляция с 4-уровневым кодированием).

Будущие линии оптической связи должны быть недорогими, ёмкими и иметь низкое потребление энергии. Согласно современным представлениям, добиться высочайших скоростей можно только с помощью оптических трансиверов на полупроводниках на основе фосфида индия (InP).

К сожалению, техпроцессы с использованием этого соединения достаточно затратные и подвержены высокому уровню брака при массовом производстве. Хорошо освоенные промышленностью техпроцессы КМОП отлично масштабируются, но сильно ограничивают полосу пропускания. Например, ЦАП в рамках техпроцессов КМОП с трудом преодолевает 50-ГГц барьер.

Учёные из Imec и Университета Гента смогли достичь внушительной пропускной способности ЦАП (цифро-аналоговых преобразователей) с помощью кремний-германиевого БиКМОП техпроцесса (SiGe BiCMOS). Они создали 55-нм чип, который объединил выходы четырех ЦАП.

С помощью технологии чередования во времени четырех потоков по 25 Гбод получилось создать решение с общей ёмкостью канала 100 Гбод. Это эквивалентно одному ЦАП, работающему со скоростью 100 гига-выборок в секунду. Используя модуляцию PAM-4, скорость передачи сигнала достигает 200 Гбит/с. Потребление, как сказано выше, осталось сравнительно низким ― на уровне 700 мВт, хотя частота дискретизации выросла значительно.

Поскольку технология SiGe BiCMOS может быть реализована при большом объеме производства с допустимым уровнем брака, центры обработки данных могут получить новые оптические трансиверы с превосходными характеристиками уже в обозримом будущем.

Постоянный URL: http://servernews.ru/1003973
13.09.2019 [15:03], Константин Ходаковский

Cisco Acacia «прокачает» оптоволокно до 1200 Гбит/с

Предельная волоконно-оптическая скорость передачи данных на одной длине волны сделает ощутимый скачок в этом месяце. Компания Acacia Communications, принадлежащая теперь Cisco, заявила, что покажет решение, способное передавать данные со скоростью 1,2 терабита в секунду.

Демонстрация состоится во время Европейской конференции по оптической связи (ECOC) 22–26 сентября в Дублине. Стоит сказать, что лишь в марте этого года впервые была достигнута скорость в 800 Гбит/с на одной длине волны во время конференции OFC в Сан-Диего, США.

Взрывной рост облачных сервисов и, соответственно, объёмов трафика между центрами обработки данных (ЦОД) поставил перед операторами сетей насущную задачу масштабного расширения пропускной способности: и для передачи информации внутри ЦОД, и для отправки данных по подводным кабелям протяжённостью свыше 10 тысяч километров.

Долгое время ЦОД использовали 100-Гбит оптоволоконные соединения. Сейчас операторы начали переводить трафик в нагруженных ЦОД на 400-гигабитные каналы. Одновременно операторы стремятся к увеличению пропускной способности трансокеанских подводных кабелей, последний из которых — Pacific Light Cable — способен передавать данные на суммарной скорости до 144 Тбит/с между Гонконгом и Лос-Анджелесом.

Важнейшими элементами этих систем передачи информации выступают модули, которые преобразовывают цифровые сигналы между электронной и оптической формами. Они требуют как фотонных схем преобразования, так и мощных процессоров цифровой обработки сигналов (DSP), которые точно фильтруют шумы, накапливаемые при высокоскоростной передаче.

В 2017 году Acacia представила свой 1,2-Tбит чип Pico DSP. Он был интегрирован в модуль, который занимался обработкой пары сигналов по 600 Гбит/с, передаваемых на двух отдельных длинах волн. Новый модуль Acacia AC1200-SC2 объединяет тот же чип DSP со встроенными фотонными схемами, чтобы генерировать сигнал 1200 Гбит/с для передачи уже по одному каналу.

По словам вице-президента Acacia по маркетингу Тома Уильямса (Tom Williams), модуль может работать на высоких скоростях при сравнительно коротких дистанциях, но способен передавать данные на сниженной скорости при больших расстояниях. Такие модули способны обрабатывать три канала 400 GbE из ЦОД, используя мощную, но чувствительную к шумам схему модуляции 64QAM.

Для передачи на большие расстояния модуль может переключиться на более надёжные схемы модуляции. Например, 16QAM может передавать два сигнала 400 GbE, а наиболее надёжная схема DPSK (Differential Phase Shift Key) способна транслировать один сигнал 400 GbE на 10 тысяч километров. Модуль также можно использовать для устаревших стандартов, которые всё ещё широко используются (50, 75 или 100 ГГц).

Господин Уильямс также отметил, что ключом к дальнейшим усовершенствованиям является использование кремниевой фотоники. Её преимущество — в интеграции кремния с оптическими материалами для объединения оптических и электронных функций. Это область, которая относительно недавно стала достаточно развитой для широкого применения.

Признала это и IEEE, которая объявила, что ежегодная премия в области фотоники будет вручена Крису Доерру (Chris Doerr), вице-президенту Acacia по развитию.

Аналитики полагают, что распространение сетей 800 и 1200 Гбит/с существенно понизит стоимость передачи данных по оптоволокну, а  операторы смогут впервые передавать 400-гигабитные сигналы по длинным и сверхдлинным маршрутам.

Постоянный URL: http://servernews.ru/994034
12.07.2019 [12:05], Сергей Юртайкин

Cisco купила производителя технологий для оптической связи Acacia за $2,6 млрд

Компания Cisco объявила о приобретении разработчика технологий оптических интерконнектов и кремнивевой фотоники Acacia Communications за $2,6 млрд. С учётом собственных средств поглощаемой компании и её ценных бумаг, находящихся в обращении на рынке, стоимость сделки составила $2,84 млрд.

По условиям соглашения, Cisco заплатит за каждую акцию Acacia по $70. Это почти наполовину больше курса котировок компании за день до объявления о сделке. После анонса ценные бумаги Acacia подорожали на 35 %, акции Cisco незначительно подешевели.

Acacia предлагает оптические модули, модули цифровой обработки сигналов, интегральные схемы и трансиверы для использования в сетевом оборудовании и дата-центрах. Компания утверждает, что разработала первый на рынке транспондер оптических каналов, передающий данные на скорости 400 Гбит/с. Cisco входит в число клиентов Acacia наряду с Nokia, Huawei и др.

После закрытия сделки Acacia присоединится к подразделению Cisco Optical Systems and Optics. Руководитель подразделения Cisco Networking and Security Дэвид Гекелер (David Goeckeler), комментируя покупку Acacia, отметил, что стратегическая важность  оптическихтехнологий  растёт по мере взрывного увеличения пропускной способности сетей и распространения многооблачных сред.

Постоянный URL: http://servernews.ru/990630
13.04.2019 [20:02], Геннадий Детинич

Intel штурмует вершины кремниевой фотоники: от трансиверов 400 GbE до интеграции в ASIC

На прошедшей неделе на мероприятии Interconnect Day компания Intel рассказала о текущих и будущих планах по штурму вершин кремниевой фотоники. В Intel плотно занимаются этой темой почти два десятилетия. Это то будущее, без которого будет невозможно дальнейшее развитие центров по обработке данных и, следовательно, обуздание растущих по экспоненте информационных потоков. Линии связи на основе меди (и металлических проводников вообще) не могут обеспечить требуемые в новых условиях дальность передачи, энергоэффективность и пропускную способность. Переход на оптические соединения частично решает эти проблемы, но настоящий прорыв обеспечит исключительно кремниевая фотоника ― интеграция на уровне кристалла кремниевых электронных цепей с полупроводниковыми лазерами и оптическими элементами.

tomshardware.com

tomshardware.com

В качестве небольшого отступления поясним, что для оптики в кремнии не нужны какие-то особенные прозрачные материалы и волноводы. Обычный кремний прозрачен для инфракрасного излучения. Полупроводниковые инфракрасные лазеры, волноводы, оптические разделители, мультиплексоры, сумматоры и другие дискретные элементы оптических трансиверов могут выпускаться в рамках классического техпроцесса КМОП, как и обычные чипы. Компания Intel, например, уже производит интегрированные элементы кремниевой фотоники в рамках 24-нм техпроцесса на 300-мм пластинах. За последние два года Intel продала свыше одного миллиона оптических приёмопередатчиков 100 GbE в исполнении QFSP28.

tomshardware.com

tomshardware.com

Новой продукцией компании станет приёмопередатчик 400 GbE: поставки стартуют в четвёртом квартале текущего года. Это решение содержит всего четыре высокоинтегрированных компонента, тогда как в случае использования дискретных оптических компонентов каждый трансивер пришлось бы собирать из десятков комплектующих, что сложнее, дороже и повышает уровень брака.

Пока оптические порты Intel 400 GbE будут опираться на четыре канала (лазера + обвязка) с пропускной способностью 100 GbE, но в дальнейшем компания планирует перейти на одноканальную реализацию приёмопередатчика. Добавим, что порт Intel 400 GbE обеспечит дальность передачи на 500 метров. Оптические порты на основе кремниевой фотоники с пропускной способностью 400 Гбит/с для дистанций 2 и 10 км выйдут позже.

tomshardware.com

tomshardware.com

Дальнейшее повышение скорости каналов до 1,6 Тбит/с потребует переноса приёмопередатчиков вплотную к коммутаторам (ASIC). Медь в этом случае не помощница от слова совсем. Решить проблему с потреблением, скоростью и задержками помогут только интегрированные в чип или в корпус ASIC блоки приёмопередатчиков на основе кремниевой фотоники. У компании Intel в этом богатейший опыт и она серьёзно рассчитывает на этот рынок.

tomshardware.com
tomshardware.com
Постоянный URL: http://servernews.ru/985802
10.07.2018 [16:48], Геннадий Детинич

Imec показал гибридный чип с FinFET-драйвером и кремниевой фотоникой

Как справедливо подметили в бельгийском исследовательском центре Imec, требования к пропускной способности между узлами в ЦОД растут экспоненциально. При этом необходимо если не снижать потребление интерфейсов, то хотя бы сдерживать его рост. Выходом из этого противоречия может стать так называемая кремниевая фотоника, когда на одном чипе с контроллером или процессором располагаются приёмопередающие модули оптической связи. Желательно также, чтобы всё выполнялось в одном техпроцессе, а также, чтобы этот техпроцесс был привычным и уже обкатанным на производстве.

Совместить все требования в одной разработке взялись специалисты всё того же центра Imec. Так, на днях на форуме Imec Technology Forum USA в Сан-Франциско был продемонстрирован гибридный чип, сочетающий CMOS-процесс с использованием FinFET-транзисторов и элементы оптических приёмопередатчиков с германиевыми фотодиодами. Опытное решение, выпущенное на «классическом» 300-мм производственном оборудовании Imec, продемонстрировало рекордные значения по минимальному потреблению при передаче данных по оптическому каналу на уровне 40 Гбит/с. В процессе передачи динамическое потребление чипа составило 230 фемтоджоулей/бит (фмДж/бит), а площадь интегральной схемы на кристалле составила всего 0,025 мм2. В перспективе, уверены в Imec, можно будет создавать сверхминиатюрные гибридные решения для передачи данных на скоростях в несколько Тбит/с на дальности от 1 до 500 и больше метров.

В представленной разработке дифференциальный драйвер с использованием FinFET спроектирован вместе с цепями и элементами кремниевой фотоники. В частности, с кольцевым модулятором передатчика 40 Гбит/с с оптической модуляцией NRZ (код без возвращения к нулю, максимально простое кодирование без синхронизации), динамическое потребление которого составило 154 фмДж/бит. Приёмник представлен схемой в виде трансимпедансного усилителя (trans-impedance amplifier, TIA) из элементов FinFET, согласованного с германиевым фотодиодом. Схема позволяет улавливать и определять оптический сигнал с последовательностью 40 Гбит/с с ожидаемой чувствительностью –10 дБм при потреблении 75 фмДж/бит.

Реализация гибридного чипа кремниевой фотоники Imec

Реализация гибридного чипа кремниевой фотоники Imec

В качестве эксперимента была продемонстрирована петля связи с использованием излучения 1330 нм по стандартному одномодовому волноводу с энергетическим запасом 2 дБ. В конечном итоге решение позволяет создать на кристалле гибридный модуль площадью 0,1 мм2 в конфигурации 4 × 40 Гбит/с со встроенной поддержкой температурной коррекции, что показывает возможность масштабировать решение до пропускной способности свыше 100 Гбит/с на одно волокно.

Постоянный URL: http://servernews.ru/972423
Система Orphus